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Summary 

Stress-relaxation, creep and stress-strain relations are discussed in 

terms of pseudo cross-link concept. The decrease of cross-links by the 

stress or strain leads to an equation similar to the Mooney-Rivlin equation~ 

Viscous flow is also an important factor decreasing the cross-sectional area 

of the specimen and the chain-extension~ Viscosity much decreases with 

increasing rate of extension and temperature. Filler ingredient plays 

roles of not only enchancing the chain strain but also providing the pseudo 

cross-link due to adsorption of the rubber on the filler surface~ 

Theory 

i. Decrease of pseudo cross-link by extension 

Static behavior of solid polymers such as stress-relaxation, creep and 

stress-strain relations can be interpreted on the basis of the pseudo cross- 

link concept. For the cross-linked rubber the elastic force f (dyne/cm 2) 

acting on the original cross-sectional area A = 1 cm 2 at an extension ratio 

% is given as follows~ f = vkTA(X - I/% 2 ) (i) 

where v is the number of cross-links or the number of chains existing in a 

unit volume or 1 cm 3 of a specimen~ 

For non-vulcanized rubber v is taken to be the number of pseudo cross- 

links ~2 and is variable with the time t and represented simply by equation 

(2) -k't 
= v2 = ~e + (~o - re)  e (2) 

where ~o is an equilibrium value at the initial stage under no stress and 

~e is that at the final stage under stress, k' is a rate constant of break 

down of the pseudo cross-link per second. 

At the same time the decrease of pseudo cross-link is accompanied by the 

decrease of the cross-sectional area and chain extension. The cross- 

sectional area decreases from the initial area A0 to the area A at the time 
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t. The chain extension ratio I is smaller 

than the extension ratio of the specimen ~. 

They are given from figure 10 The end-to- 

end distance of the chain, its elongation 

and the number of the chain along the exten- 

sion direction are given by (N/v0)I/~ ~ and 

(v0/N) I/3, respectively, and the length of 

the specimen is equal to their product. 

After the change of the pseudo cross-link 

from v 0 to v, these values change respectively 

to (N/~)I/~ X and (v/N) I/3 for the same length 

of the specimen, and consequenkly 

o r  ( N / v 0 ) z / 2 ~ ( v 0 / N ) Z / a  = ( N / V ) I / 2 t ( v / N ) I / 3  

A/A0 = t / ~  = (v/vo) 1Is = e - k ' t / 6  

Fig.l Relation between 1 

and 

(s) 

Substituting equations (2) and (3) into (i), the stress is given as 

f/km ={re + (v 0 - re) e -k't }(A/A0)(I/~)(~ - I/~ 2) 

={re (V 0 re) e -k't} + - e'k't/3(~ _ i/~ 2) (4) 

It is also noticed that the rate constant k' is much affected by the 

force or strain which decreases the activation energy for the break down of 

the cross-link of size b, i.e. bE~ by the work done W. Namely, 

k ' ~ o  e x p { -  (bE~ - W)/RT} (5)  ~ 

The work  d o n e  W i s  g i v e n  b y  a p r o d u c t  o f  t h e  

f o r c e ,  t h e  c r o s s - s e c t i o n a l  a r e a  (n  I/2 ~)2 and �9 : �9 �9 ~s 

the loosen bond length 6~ and the size of 

b pseudo cross-link b as shown in figure 2 
W = f (nI/2~) 2 6%xbN0 (6) Fig. 2 Pseudo cross-link in 

the loosen state 
where n, ~ and No are the number of segments 

of a chain, the diameter of a segment and Avogadro's number, respectively 

and 6 is assumed to be 0.04 as mentioned before. Substituting the follow- 

ing relations 
f = vkT(l - I) 

n = N/v and ~3 = I/N 

it follows that k' = k~e b6~l - I) ~ k~bl (7) 

where , -bE~/RT 
k 0 = (kT/h) n~ 3 e 

The size b lies between 4 and 16. Equation [7) implys that k' becomes 

larger as the chain extension ratio I increases. 

2, Pseudo cross-!inks of multiple size 
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Since the cross-link of the size b possesses b-times larger value of the 

heat of formation AH, the entropy loss AS and the activation energy E* than 

those of the unit link, AH0, AS0 and E~, respectively, the fraction of the 

b-size cross-link Vb/N and its relaxation time T b are given by equations (8) 

and (9), respectively. 

Vb/N = exp{b (-AH0/RT + AS0/R)} (8) 

3 exp (bE~/RT) (9) T b = i/k~ = (h/kT)n B 

Eliminating b from equations (8) and (9), a dynamic spectrum of the cross- 

link w or the elasticity E against the relaxation time T is obtained as a 

function of temperature. 

log (E/EA) = log (v/N) = (-AH/E'~) ( i  - T/TA) log ('rA/'r) (10) 

where E A and %A are values for the unit size cross-link A. T is an experi- 

mental temperature and T A is a transition temperature given by AH0/AS0. 

As mentioned previously another transition temperature T B for the flow 

exists, which is equal to I.STA, and at near TB, equation (i0) is rewritten 

as E/E A = ~/!) A : (TA/T)I/Z (ii) 

For the multiple size network the cross-links having sizes smaller than b 

are relaxed during the time t equal to %b and the fraction of the remaining 

cross-link is given by equation (12). 

~/~0 = (T0/T) I/2= (T0/t) I/2 (12) 

where ~0/N and To are the initial fraction of the cross-links and their 

relaxation time, respectively. To is also affected by the strain and 

expressed by equation (13)~ 

To = ( l / k ~ ) e  - ~ b ( ~  - I / ~ 2 )  = 1 /~b~k'0  ( 1 3 )  

S u b s t i t u t i n g  equa t ion  (13) i n t o  equa t ion  (12) and t ak ing  t h a t  the e x t e ns i on  

r a t i o  of chain X i s  equal to t h a t  of the specimen ~ and the r a t e  of 

ex t ens ion  i s  & or ~ / t ,  i t  fo l lows  t h a t  

f/f0 = (k't) -I/2= (&/~bk~)i/2(I/~) (14) 

Under stress the successive break down of the pseudo cross-link takes 

place. The force at break is assumed to be represented as a product of 

the fractional number of the remaining pseudo cross-link v2/N, the fraction 

of pseudo cross-link having more than the bond energy -AH in a total chain 

energy given by ~2RT and the bond force constant given by 

d(-AH/~2)/d~ ~ -AH/V0, V0 being a molar volume of the segment. 

f =(~>21N) exp {-(-AH/X2RT)}(-AHIV0) (15) 

Equat ion  (iS) possesses  the maximum at  

= (-AH/RT) Iz2 (16) 
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For the unit pseudo cross-link (CH2)2, -AH is 1360 cal and equation (16) 

becomes to 

% = (1.36/0.6) l/2 = 1.5 

at 0.6 Kcal of RT. This value is close to the value obtained by taking 

~0/N to 1/2. = (N/Vo) 1/2= ~ = 1.4 

A chain composed of two or three units is assumed to be linked with a 

pseudo cross-link composed of two or three units as the chain of the 

minimum size. 

3. Rheological equations 

Equation (14) derives several rheological relations. 

(i) Stress-strain relation From equations (4) and (14), equation 

(17) is obtained f/(~ - i/~ 2) = kr{(v0 - ~e)(&/6k~)I/2/~ + ~e } (17) 

which corresponds to the useful phenomenological relation of Mooney and 

Rivlin 2, i.eo, 
f/(c~ - 1/C~ 2) = 2CI + 2C2/C~ (18) 

In fact, s plots of f/(~ - I/~ 2) against i/~ gives a straight line in 

various cases not only for vulcanized rubbers, but also for unvulcanized 

rubbers. The meaning of C1 and C2 have been discussed by several authors 

but the pseudo cross-link concept also g~ve a likely explanation 3 CI and 

C2 are given as follows 
2CI = (~i + re)kT (19) 

and 
2C2 = (~)0 - x) e) (~/~k~) I/2 kT (20) 

where vl is the number of the chemical cross-link for the vulcanized 

rubber. Equation (20) suggests that C2 increases as the rate of extension 

increases and k~ or the temperature is lowered. This fact was confirmed 
�9 ! 

by the authors~ However, C2 becomes constant when ~/k0 becomes unity, and 

in this case equation (17) is written as 

f/((~ - l/(~ 2) = kT { (~0 - ~e)/~ + ~e } (21) 

It is noticed that equation (18) is valid for the value of ~ above 1.4. 

For the vulcanized rubber there is an upper limit arising from the limited 

extensibility of the chain dependency on the degree of vulcanization~ 

Figures 3and 4 illustrate the profile of the stress-strain relation, where 

the curve a refers to equation (19) and b refers to the curve for 

vulcanized rubbers. 

(2) Stress-relaxation Taking ~ to be a constant in equation (15), 

f is given as f/f0 = (I/k't) I/2 (22) 

which indicates that the stress decreases with t ~/2. 

(3) Creep under a constant load Taking f to be a constant f0, ~ is 
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(b) 

I 

s 

(a) 

1.4 o~ 

Fig. 3 Unvulcanized (a) and 

vulcanized rubber (b) 

! 

/ ~  (b) 

t.~ 

0.3 I/~ 0.7 

Fig. 4 Mooney-Rivlin plot for un- 
vulcanized (a) and vulcanized 

r u b b e r  (b) 

given as follows, a - i/~ 2 = (f/v0kT)(k't) I/2 (23) 

However, if the effect of the stress on the rate constant k' is considered, 

f0/kT t~0 - re\ [ 1 ~i/2[d~,I/2 

For a small value of ~e 

~3/3 - 2 in~- i/5~ s ={(~0 -6k 6~e )z -~ tf~ (24) 

which indicates that ~ increases proportionally with t I/3 

(4) Recovery after release from load Taking f to be zero in equation 

(15), it follows that 
d~/dt = -{~e/(~0 - ~e)} 2 6k~ 2 

I/~ = I/~ B + {Ve/(~ 0 - re)} 2 6k~t (25) 

which indicates that e decreases inversely proportionally with t, eB being 

an elongation ratio at a turn-back point B. 

4. Viscous flow resistance 

The elastic deformation accompanied by the decrease of the pseudo cross- 

links involves the viscous flow of chain and it is represented as a product 

of the viscosity ~, the rate of deformation ~ and a factor due to the 

deformation ~ as follows. As illustrated 

in figure 5, the length increases from L to 

La and the cross-sectional area decreases 

from L z to L2/~ as the specimen is elongated. 

The relation between the velocity gradient 

and the shear force is represented as 

Au f (L/ ~) 2 
L / ~  - u(L~) (L/4~) (26) 

Since  the  v e l o c i t y  d i f f e r e n c e  Au i s  equal  to  

L&, t h e  v i s c o u s  f o r c e  fv becomes to  

fv = f/~ = n~ = (~2kT/k')~ 

> Au 

i/ / 
Fig. 5 Velocity gradient 

(27) 

However, the viscous force induced by the extension is involved in the 
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elastic force and is not revealed unless fv is larger than the elastic force. 

In the latter case the tensile deformation results in the plastic rupture. 

On the contrary, the deformation in a closed vessel the continuous viscous 

flow occurs and the viscous force fv is not given by equation (27) but by 

equation (28). fv = n~ (28) 

For example, the viscous flow in the capillary no correction is necessary 

since the length of the specimen is kept constant in the capillary. 

The viscosity is affected by the deformation for two reasons: one is the 

acceleration of the break-down of the pseudo cross-link by the elongation of 

the chain and k' is increased from k~ as pointed out in equation (13) and is 

represented as k' = k 0 exp { ~b(~ - I)} (29) 

Another reason is the change of chain length due to the decrease of the 

pseudo cross-links. The average chain length n is given by 

n = N / V 2  (30) 

And n i s  i n c r e a s i n g  w i t h  d e c r e a s i n g  number o f  t h e  pseudo  c r o s s - l i n k  and when 

n becomes l e s s  t h a n  t h e  c r i t i c a l  l e n g t h  o f  n B assumed to  be 102~as p o i n t e d  

ou t  in  t h e  pape r  2, k '  i s  a f f e c t e d  by t h e  c h a i n  l e n g t h  as  r e p r e s e n t e d  as 

k t ( n B / n )  3.s = k ' ( v 2 / ~ B  )3"s (31) 

where  VB i s  t h e  number o f  c r i t i c a l  pseudo c r o s s - l i n k .  The v i s c o s i t y  ~ i s  

n = (~BkT/k')(~B/V2) 3"s (32) 

And at the stationary state n becomes to no, i.e., the segmental length of 

the whole molecule and equation (32) becomes to 

n = (~BkT/k~)(nB/n0) 3"s exp~6b(X- I)} (33) 

Equation (33) is rewritten as a function of the force, i.e., f = ~ as 

n = no exp (-n&/~BkT) = n0 exp ( -n~ /nok~)  (34) 

where  no i s  t h e  v i s c o s i t y  a t  no s h e a r  r a t e  o r  

3 (3s )  no = (~BkT/k~)(nB/n0)  3"s n B 

Equation (34) is transformed into a simple form for the structural viscosity 

H/no = 1 / (1  + &/k~) ~ &-n (36) 
where 

n = 1 - log(l + &/k~)/log& (37) 

The order of n was found to be 0.7,-.,0,9 for rubber. 

5. Effect of filler 

Fillers such as carbon black and clay enhance the elasticity of the 

polymers. The effect may be ascribed to two reasons: One is that fillers 

decreases the volume fraction of the polymer and as a result the actual 

deformation of the molecular chain becomes larger than the appearent 

deformation of the specimen. The second reason may be the formation of 
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the pseudo cross-link between the filler surface and the surrounding 

molecular chain. 

The former volume effect is calculated as follows. For the volume 

fraction of filler x, the tensile elongation of the specimen a is given by 

the sum of the tensile fraction of the polymer whose elongation is ~ and 

that of the filler and accordingly, equation (33) holds. 

= (i - x) I/3 h+ x I/3 ~ (i - x) I/3 ~ (33) 

Consequently, the actual extension I is represented as 

h ~ ~/(i - X) I/3 (34) 

The additional pseudo cross-link due to the adsorption on the filler is 

given by a product of the volume fraction of fillers x and their specific 

number of pseudo cross-link on a unit fraction of the filler, Vf and the 

latter is proportional to the specific surface area, i.e., a reciprocal 

radius of the filler particule i/r and the strength of adsorption given by 

exp (-~If/RT) where AHf is an exothermic heat of adosorption. 

xVf ~ (I/r) exp (-AH/RT) (35) 

Taking these effects into consideration equations (17) and (27) may be 

rewritten as follows 

f/kT =[v~ e-k,~t/3 +x wf~ e-k,r a (36) 

and fv/kT = (v2/k' +xVf/k~)&a (37) 
where the suffix f refers to the filler and a is taken to be 

~(actual)/(l - x) i/3. 
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